

Oilfield Waste Disposal (OWD) Facilities Chapter 6, Section 2 Permitting Guidance Implementation

Overview

- WYPEC Tool
- Emission Estimation
 - New facilities
 - Existing facilities
- Implementation
 - New facilities
 - Existing facilities

WYPEC Tool

- AQD sponsored studies to establish relationship between VOC content of water at OWD facilities and air emissions.
- Resulted in development Wyoming Pond Emissions Calculator (WYPEC).
- Documents related to the study and model development are available on AQD's website.

WDEQ-AQD Model Development Project

WYOMING DEPARTMENT OF ENVIRONMENTAL OUALITY

Establish correlation between pond VOC content and airborne concentrations to estimate future emissions

END PRODUCT: Easy-to-use software tool to predict OWD pond emissions for AQD permitting and emissions inventory programs

Model Development – Technical Approach

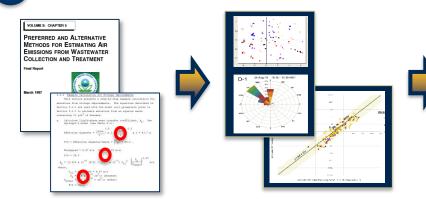
WYOMING DEPARTMENT OF ENVIRONMENTAL QUALITY

Data Collection: Air/water sampling events at multiple facilities.

Flux Chambers

Open Path FTIR Air

Samplin


a

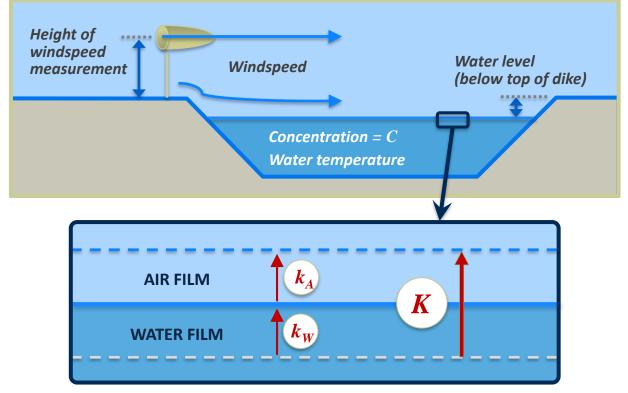
On-site Meteorology

Predictive Model Development

									QU	
Tanuth Variables										
	00785	m*								
Durface Area	12.2	49372	131432	1	Pond Name	Available Dispose	us - Pond C		1	
ge Water Depth		- 7	22.0	1						
Placed measurements	n height		4 19.7 Cit density							
e sup us usual		Daily An Temperature An Tipler			Ave Wind		r Level	d surface		
	1010015	(dec C)		Temp Gaud.	Iseed	Contraw two of differs		sovered by-		
Stort Cale		Argente	Argian	(deg C)	(14/4)	(#)	<i>0</i> 0	lie -	04	
2/10018	2082015	-1.3	-11.0	2.0	2.0	2.0	8.2	95	0	
3/10018	3010018	42	-10.8	2.5	2.5	2.5	8.2	78	0	
4/1/2015	4302015	10.3	-9.4	2.5	1.3	2.5	8.2	0	0	
8/10015	8/31/2018	16.0	-1.6	7.2	1.4	2.8	8.2	0	0	
6/10015	£302015 7312015	21.1	3.1	12.1	1.0	2.8	8.2	0	0	
7/1/2018 N1/2018	7/31/2015 8/31/2015	28.9	4.1	15.0	1.0	2.5	8.2	0	0	
910018	8302015	19.7	-0.3	87	1.0	2.5	8.2	0	0	
10/1/2018	10312018	12.6	-8.0	3.8	1.6	2.5	8.2	0	0	
11/1/2018	11/30/2018	3.3	-11.1	2.5	1.8	2.8	8.2	80	0	
12/1/2018	12/31/2018	-2.7	-14.7	2.0	1.0	2.5	1.2	95	0	
A	w Avg	L			14	2.8	13			
al Average Emission										
	Arestade Co Water	OI	OI				erage Ann	upl Emire	rionr	
Constituent	swatt1	Inche Stations	hgM	(US torns.lpr)			eruge Ann	our critta.	10113	
	0.0348	0	1.78-01	6.88-02	Aveid delyste					
Acetaldeliyde		0	1.38+01	8.38+00	Beranne					
Bergene	8.02									
Bacante Bularie, n-	0.129	0	2.88-01	1.38-01						
Becanie Bularie, n- Ethanie	0.128	0	7.08-01	2.88-01	Ebare			_		
Berlania Bularia (r- Etharia Etharia	0.128	0	7.08-01	2.88-01 1.38+00	Ebare					
Bacanto Balaro, ir- Ebaro Ebaro Ebridi	0.128 0.27 10 0.38	0 0 0	7.08-01 3.38+00 7.78-01	2.88-01 1.38+00 3.18-01	Ebare Ebare Ebglanome					
Balane in Bulane in Ethano Ethanol Ethyloncarce Ethylone	0.128 0.27 10 0.38 0	0 0 0	7.08-01 3.38+00 7.78-01 8.48-04	2.88-01 1.38+00 3.18-01 3.48-04	Ebara Ebylanawa Ebylanawa Ebylana					
Becane Bulane, nr Ubune Ubune Ubytencene Ubytene Sumablebule	0.128 0.27 10 0.38 0 0.082	0 0 0 0	7.08-01 3.38+00 7.78-01 8.48-04 2.88-03	2.88-01 1.38+00 3.18-01 3.48-04 1.28-03	Ebara Ebara Ebylan ana Ebylan Farnaldoyla					
Becanse Bulane, rv Ebane Eband Ebyton Ebyton Brytene Normabletyde Kopropanal	0.128 0.27 10 0.38 0 0.082 8.0	0 0 0 0	7.08-01 3.38+00 7.78-01 8.48-04 2.88-03 3.08+00	2.88-01 1.38+00 3.18-01 3.48-04 1.28-03 1.28+00	Ebare Ebylan ann Ebylan Forvaldsbyle Forvaldsbyle					
Berlana Bulana, in- Dhana Dhana Dhuana Dhuana Ducma Mathola Nopophala Nopophala	0.128 0.27 10 0.38 0 0.092 8.0 4.8	0 0 0 0 0	7.08-01 3.38+00 7.78-01 8.48-04 2.88-03 3.08+00 2.48+01	2.88-01 1.38+00 3.18-01 3.48-04 1.28-03 1.28+00 8.48+00	Ebare Ebyler Ebyler Ebyler Fernaldstyde Ingroperi Iddure					
Barbana Bulana, n- Elbana Elbana Elbytonciana Elbytonciana Elbytonciana Elbytonciana Elbytonciana Scoropanal Scoropanal Scoropanal Scoropanal	0.128 0.27 10 0.35 0 0.082 8.0 4.8 871.8	0 0 0 0 0	7.08-01 3.38+00 7.78-01 8.48-06 2.88-00 3.08+00 2.48+01 1.38+02	2.88-01 1.38+00 3.18-01 3.48-04 1.28+00 8.48+00 8.48+00 8.08+01	Ebare Ebylan ann Ebylan Forvaldsbyle Forvaldsbyle					
Barbana Bulana, in Ethana Ethylioniaea Ethylioniaea Ethylioniaea Ethylioniaea Ethylioniaea Bolylioniae Bolylionia Dathana Dathana	0.128 0.27 10 0.38 0 0.092 8.0 4.8 871.8 0.302	0 0 0 0 0 0 0	7.08-01 3.38+00 7.78-01 8.48-04 2.88-03 3.08+00 2.48+01 1.38+02 4.48-01	2.88-01 1.38+00 3.18-01 3.48-04 1.28+00 8.48+00 8.48+00 8.48+01 1.88-01	Ebare Ebare Ebyler.com Ebyler. Ebyler. Farmildiyle Internet Edulard Farmild Payme					
Bergena Bullare, in- Ethere Ethere Ethere Ethere Ethere Ethere Econopanal McDane McDane McDane McDane McDane McDane McDane McDane	0.128 0.27 10 0.38 0 0.092 8.0 4.8 8.0 4.8 8.7 1.8 0.202 8.67	0 0 0 0 0 0 0 0 0 0	7.08-01 3.38+00 7.78-01 8.48-04 2.88-03 3.08+00 2.48+01 1.38+02 4.48-01 2.28±01	2.88-01 1.38+00 3.18-01 3.48-04 1.28:03 1.28:00 8.48+00 8.48+00 8.48+00 8.48+01 1.38:01 8.48:01	Ebare Ebare Ebylen Ebylen Farnaldsjol Ingespara Univers					
Barbana Bulana, in Ethana Ethylioniaea Ethylioniaea Ethylioniaea Ethylioniaea Ethylioniaea Bolylioniae Bolylionia Dathana Dathana	0.128 0.27 10 0.38 0 0.092 8.0 4.8 871.8 0.302	0 0 0 0 0 0 0	7.08-01 3.38+00 7.78-01 8.48-04 2.88-03 3.08+00 2.48+01 1.38+02 4.48-01	2.88-01 1.38+00 3.18-01 3.48-04 1.28+00 8.48+00 8.48+00 8.48+01 1.88-01	Ebare Ebare Ebylescere Ebylescere Ebylescere Farrabbyle Ingropan Helward Popan Tokare					

Water

Sampling



 TEXAS
 Institute of Renewable

 A&M
 Natural Resources

Two-Film Emission Models

 k_W and k_A depend on chemical species, meteorology, etc.

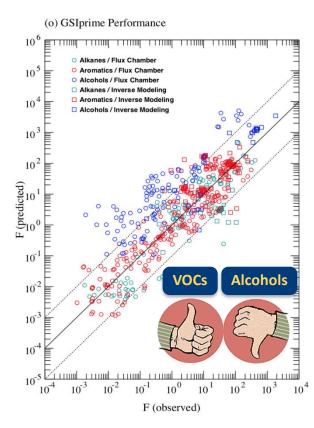
Emission flux is proportional to concentration:

 $F = K \cdot C$

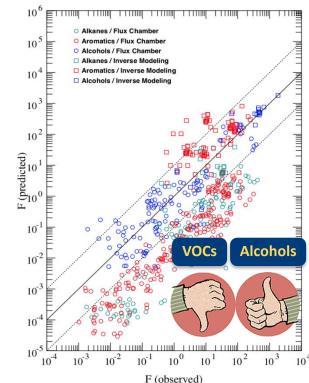
K depends on Henry's Law and combination of mass transport coefficients across a water film, k_w , and air film,

$$\frac{1}{K} = \frac{1}{k_W} + \frac{1}{Hk_A}$$

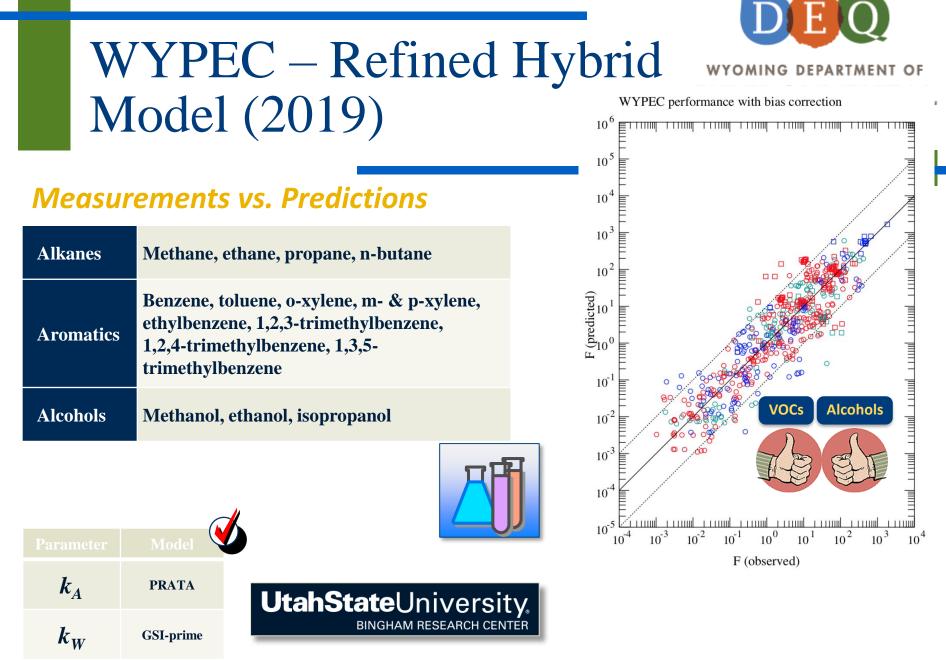
 k_A


WYOMING DEPARTMENT OF

ENVIRONMENTAL


QUALITY

2019 Oilfield Waste Disposal Pond Model Analysis


Best-Performing Models for Different Chemical Classes

(k) PRATA Performance

WYPEC Tool

- Draft Chapter 6, Section 2 OWD Facilities Permitting Guidance describes input methodology for modeling emissions from ponds at new and existing OWD facilities.
- Guidance applies to ponds/pits/basins at OWD facilities, but not other emissions units (i.e. engines, tanks, flares, etc.).

WYPEC Tool

- The implementation of the proposed guidance does not preclude the use of other pond emissions estimation methods.
- WYPEC results are just one part of a complete permit application, emissions inventory submission, or compliance demonstration.

Emission Estimation

- Key Guidance Features for Existing and New Facilities
 - WYPEC guidance provides the parameters the Division expects all applicants to address, regardless of the calculation method chosen.
 - Guidance is designed to be flexible and accommodate a variety of data input methodologies.

Implementation

- Guidance addresses three scenarios
 - Existing Facilities
 - Currently without permits for ponds
 - With Permits (have sampling conditions)
 - New Facilities

Title V

- If 12 months of sampling data indicates the facility is a major source under Chapter 6, Section 3, contact the Title V program immediately.
- Once NSR permit acknowledging Title V status is issued, a complete application should be submitted to Title V within 1-year.

Next Steps

- Division has taken comment from industry (making revisions to guidance)
- The Division will then advertise for public input on the proposed guidance.
- It is not necessary to wait for the guidance to be issued to submit an application.

Contacts

- Andrew Keyfauver, NSR Program Manager <u>andrew.keyfauver@wyo.gov</u> (307) 777-7045
- Melissa Meares, Title V Program Manager

melissa.meares@wyo.gov

(307) 777-3771

 Lars Lone, Stationary Source Compliance Manager <u>lars.lone@wyo.gov</u> (307) 777-3774